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Abstract

Jet flavor tagging is a critical but challenging classifica-
tion task for High Energy Physics (HEP) experiments, as it
allows physicists to deduce the type –or flavor – of parti-
cle that originated a hadronic jet, enabling measurements
of the Higgs boson and other fundamental particles, while
suppressing the huge backgrounds for Quantum Chromody-
namics (QCD) processes. While deep learning algorithms,
most recently based on Graph Neural Network (GNN) and
Transformer architectures, have been successfully used for
jet tagging, in this work, we propose a novel algorithm
based on the Mamba State Space Model (SSM) architecture
but extended to two-dimensions, where jets are represented
as jet images. We train our model on a large dataset of ten
flavors of jets and evaluate its performance against state of
the art models. Although further refinements are necessary
in order for it to acquire state-of-the-art performance, this
work represents the first application of Mamba SSMs in the
domain of jet flavor tagging.

1. Introduction
In HEP colliders, such as the Large Hadron Collider

(LHC) at CERN in Geneva, beams of protons accelerated
to speeds very close to the speed of light are brought to
intersect at the centers of massive detectors, such as the AT-
LAS [1] and CMS [5] experiments. The collisions of these
particles produce rare, heavy particles, such as the W,Z
and Higgs bosons, the study of which is essential for un-
derstanding the fabric of Nature and the origin of the Cos-
mos. These particles are unstable and immediately decay to
lighter ones, such as gluons (g), quarks (q), photons (γ) and
leptons (electrons e and muons µ). Quarks and gluons sub-
sequently hadronize, meaning that that they produce a colli-
mated spray of secondary particles, mostly including a type

of particles called hadrons. This spray of particles, which
we call a jet, is the experimental manifestation of quarks
and gluons and is directly the object that the experiments
detect.

Physicists are interested in measuring the properties of
the particles included in a jet and reverse-engineering the
type of initial particle that originated it. This helps them
identify, for example, if the jet originated from a Higgs
boson decaying to two bottom-type quarks, which we de-
note as H → bb̄, or from a top qark decaying to a bottom
and two lighter quarks (t → bqq

′
) etc. Most importantly,

this also allows us to differentiate between jets originating
from interesting physical processes, such as the ones just
mentioned, or from QCD, which is the main background in
our detector, and is typically more abundant by around 6
orders of magnitude. This is precisely why jet tagging is
so crucial: it allows us to classify jets as coming, for in-
stance, from Higgs boson decays versus QCD interactions,
thus suppressing the contribution of the latter and increas-
ing the experimental sensitivity of detecting rare processes
such as the former. Indeed, using such jet tagging models,
often called jet taggers, was essential for the discovery of
the Higgs boson by the ATLAS and CMS experiments in
2012 [1, 6].

Jet flavor tagging is essentially a multi-class classifica-
tion task, where the input features are some representation
of the properties of the jet constituent particles and the out-
put is the predicted label of the jet. Each jet is treated as a
collection of up to Njc jet constituents, with each one hav-
ing up to Npf particle features that we can exploit. There-
fore, for one jet, our problem is formulated as the following
classification task:

[Njc, Npf ] features
classify−−−−→ C classes

In this project, we choose to represent jets as 2D im-
ages, where the horizontal (vertical) axis represents the az-
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Figure 1: Illustration of jet tagging at the CERN LHC. The
goal is deduce the parent particle, e.g. Higgs,W ,Z boson or
top quark that created the collimated spray of particles, or
jet, by reconstructing the properties of the jet and its con-
stituents. In our approach, we are specifically depicting the
jet as a “jet image”. Graphic inspired from [24].

imuthal (pseudorapidity1) distance ∆ϕ(∆η) of the jet par-
ticles with respect to the center of the jet. The jet image
has multiple channels, one for each distinct property of the
jet constituents, related to the particles’ kinematics, parti-
cle identification and trajectory displacement. We develop
a novel algorithm that employs 2D Mamba layers to cap-
ture the spatial correlations in the jet images. A schematic
representation of our approach is given in Fig. 1.

This paper is structured as follows: We begin by review-
ing related work on jet flavor tagging in Section 2. We
then present our proposed method in Section 3, analyze the
dataset we train it on in Section 4 and present our results and
comparison with state-of-the-art (SOTA) jet taggers in Sec-
tion 5. Finally, our conclusions and ideas for future work
are given in Section 6.

2. Related Work
Jet flavor tagging has evolved significantly over the past

decades, transitioning from traditional physics-based ap-
proaches to sophisticated deep learning architectures. We
categorize the existing literature into several distinct ap-
proaches, each with unique strengths and limitations.

2.1. Traditional Physics-Based Approaches

Early jet tagging algorithms relied heavily on physics-
motivated observables and hand-crafted features. The Com-
bined Secondary Vertex (CSV) algorithm [7] and its vari-
ants represented the SOTA for many years, utilizing sec-
ondary vertex reconstruction and track impact parameters to

1The pseudorapidity is defined as η = − ln tan (θ/2), where θ the
polar angle in cylindrical coordinates of the particle with respect to the
axis of the colliding particles. For more information see [25].

identify jets coming from heavy-flavor quarks, such as the
bottom (b) quark. These methods, while interpretable and
computationally efficient, were limited by their reliance on
expert domain knowledge and struggled to capture complex
correlations between jet constituents. The Boosted Deci-
sion Tree (BDT) approaches [3] also improved upon simple
cut-based methods by combining multiple observables, but
remained fundamentally constrained by the high-level na-
ture of the input features.

2.2. Convolutional Neural Networks and Jet Images

The introduction of jet images marked a paradigm shift
in jet tagging [8, 9]. By representing jets as 2D images in the
η-ϕ plane, these approaches enabled the application of com-
puter vision techniques to HEP. Subsequent work explored
various CNN architectures [18, 19], demonstrating signif-
icant improvements over traditional methods. However,
these image-based approaches faced challenges in handling
the irregular and sparse nature of jet data, often requir-
ing careful preprocessing and leading to information loss
during the pixelization process. Despite these limitations,
CNN-based methods established the viability of deep learn-
ing for jet classification and inspired further research into
more sophisticated architectures.

2.3. Graph Neural Network Approaches

Recognizing that jets are naturally represented as irregu-
lar point clouds rather than regular grids, Graph Neural Net-
works (GNNs) emerged as a powerful paradigm for jet tag-
ging. PARTICLENET [23], based on Dynamic Graph CNN
(DGCNN) [27], treats jet constituents as nodes in a graph
and learns representations through message passing. This
approach handles the variable number of particles per jet
and preserves the permutation invariance inherent in parti-
cle physics. Subsequent GNN-based methods [17, 26] ex-
plored different graph construction strategies and message
passing mechanisms. Overall, GNNs were able to achieve
excellent performance although they often required careful
hyperparameter tuning and could be sensitive to the choice
of edge connectivity, somewhat limiting their robustness
across different physics scenarios.

2.4. Transformer-Based Architectures

The success of Transformers in natural language
processing inspired their adaptation to jet tagging.
PARTICLETRANSFORMER [24] applies self-attention
mechanisms to learn relationships between jet constituents,
achieving SOTA performance across multiple benchmarks.
The attention mechanism naturally handles variable-length
sequences and captures long-range dependencies between
particles. However, the quadratic complexity of self-
attention with respect to the number of particles poses
computational challenges, particularly for jets with many
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constituents. Recent work has explored more efficient
attention variants [20, 11], but the fundamental scalability
limitation remains a significant concern for real-time
applications in experimental environments.

2.5. Other Deep Learning Approaches

Various other deep learning architectures have been ex-
plored for jet tagging. Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) networks [16] were
among the early applications, treating jets as sequences of
particles. More recent work has investigated variational au-
toencoders for anomaly detection [13], generative adversar-
ial networks for jet simulation [10], and ensemble meth-
ods combining multiple architectures [4]. While these ap-
proaches have shown promise in specific contexts, they have
generally been superseded by the more systematic GNN and
Transformer approaches.

2.6. State Space Models and Sequential Processing

State Space Models (SSMs) have recently gained atten-
tion in machine learning for their ability to efficiently model
long sequences. The Mamba architecture [14] introduced
selective state spaces that can focus on relevant information
while maintaining linear computational complexity. Vision
Mamba [31] successfully adapted these concepts to com-
puter vision tasks, demonstrating competitive performance
with Transformers while offering superior efficiency. How-
ever, the application of SSMs to particle physics has re-
mained largely unexplored, with only limited work on time-
series analysis of detector signals [2].

2.7. Positioning Our Approach

Our work addresses several key limitations in existing
approaches. Unlike traditional CNNs that struggle with
irregular jet data, our 2D Mamba architecture processes
multi-channel jet images while maintaining spatial relation-
ships through selective scanning patterns. Compared to
GNNs, which require explicit graph construction, our ap-
proach automatically learns spatial dependencies through
the SSM mechanism. Most importantly, while Transform-
ers suffer from quadratic complexity, our Mamba-based
approach achieves linear scaling with the number of pix-
els, potentially enabling more efficient processing of high-
resolution jet representations. This work represents the first
application of selective state space models to jet flavor tag-
ging, opening new avenues for efficient and scalable jet
classification algorithms.

3. Methods
In this section, we detail our proposed JetVision-Mamba

architecture and discuss the baseline methods against which
we compare our results.

3.1. Baseline Methods

PARTICLENET [23] treats jets as irregular point clouds
where each constituent particle is represented as a node
in a dynamic graph. The architecture constructs k-nearest
neighbor graphs in the η − ϕ plane and applies EdgeConv
operations to capture local particle interactions. For each
particle i, the EdgeConv operation aggregates information
from its neighbors N (i):

x′
i = max

j∈N (i)
ReLU (Θ · (xj − xi) +Φ · xi)

where xi is the feature vector of particle i, and Θ,Φ are
learnable weight matrices. This graph-based approach han-
dles a variable number of particles per jet while preserving
permutation invariance, but requires careful tuning of the
k-nearest neighbor connectivity and can be sensitive to the
choice of distance metrics in the η − ϕ space.

PARTICLETRANSFORMER [24] applies the trans-
former architecture to model long-range dependencies be-
tween all jet constituents simultaneously. Each particle is
treated as a token, and self-attention mechanisms compute
pairwise interactions across all particles:

Attentionij = softmax

(
QiK

T
j√

dk
+U ij

)
where U ij is a learned pairwise interaction term that en-
codes physics-motivated inductive biases between particles
i and j. While PARTICLETRANSFORMER achieves SOTA
performance, its quadratic scaling with the number of par-
ticles (O(N2)) presents computational challenges for jets
with many constituents, limiting its applicability in real-
time environments.

3.2. Proposed Method: JetVision-Mamba

Our approach combines the spatial representation advan-
tages of jet images with the computational efficiency of se-
lective SSMs. The main idea is to convert inherently un-
ordered set of jet constituents into structured 2D images that
preserve spatial relationships, then processing these images
with 2D Mamba blocks that achieve linear computational
complexity.

3.2.1 Physics-Motivated Jet Image Preprocessing

We transform each jet from an unordered collection of parti-
cles into a multi-channel 2D image that preserves both spa-
tial and feature information. Our preprocessing pipeline im-
plements several physics-motivated transformations:

1. Jet Centering: We center each jet using pT
2-weighted

2pT represents the momentum in the plane transverse to the axis of the
colliding beams and is often used as a proxy for the energy of a jet.
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averages to ensure rotational and translational invari-
ance:

ηcenter =

∑
i pT,iηi∑
i pT,i

(1)

ϕcenter = arctan 2

(∑
i

pT,i sinϕi,
∑
i

pT,i cosϕi

)
(2)

2. Spatial Binning: We create a 33× 33 pixel grid span-
ning ∆R = 0.8 in both η and ϕ directions, matching
the standard jet reconstruction cone size.

3. Multi-Channel Feature Engineering: We use 15 par-
ticle features, which we will introduce in Section 4,
with each particle feature becoming a separate image
channel, with feature-specific preprocessing applied
based on the expected dynamic range of each quan-
tity3 This multi-channel representation preserves both
the spatial structure of jets and the rich feature infor-
mation of constituent particles. An example of a jet
image we created from a JETCLASS image is given
in Fig. 2.

.

3.2.2 2D Selective State Space Models

Traditional state space models evolve hidden states through
linear recurrence relations:

ht = Aht−1 +Bxt, yt = Cht .

The key innovation in Mamba [14] is the selective mecha-
nism where parameters become input-dependent:

ht = Atht−1 +Btxt, yt = Ctht

where At,Bt,Ct are computed from the input xt through
learned linear projections. This selectivity allows the model
to focus on relevant information while compressing irrel-
evant details, which in our case is crucial for identifying
discriminative patterns in jets.

For 2D applications, we extend this concept using the
2DMamba architecture [30] which converts 2D spatial in-
formation into 1D sequences through structured scanning
patterns while preserving spatial continuity. Unlike previ-
ous approaches that simply flatten 2D structures, 2DMamba
employs bidirectional scanning that processes the image

3For continuous variables like pT and energy, we apply log-
transformations to handle their wide dynamic range. For the impact pa-
rameters which have small values and are related to how far away the tra-
jectories of the particles are from the point where the two beams collide,
we use a tanh transformation for numerical stability. For more details see 4.
All other features remain unaltered.
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Jet Image Example -- Hqql Jet: 22 particles, Total pT: 651.8 GeV

Figure 2: Example of a preprocessed jet image from the
JETCLASS jet. The horizontal and vertical axes correspond
to the ∆η and ∆ϕ of each jet constituent with respect to
the jet axis, and the 15 different plots correspond to the 15
image channels/input particle features.
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Figure 3: The architecture of (a) JetVision-Mamba, (b) the
2D Mamba block and (c) the selective SSM.

in both forward and backward directions to maintain lo-
cal neighborhood relationships. Our implementation uses
raster scanning (left-to-right, top-to-bottom) as the primary
traversal pattern, with the bidirectional mechanism ensuring
that each pixel can access information from both preceding
and succeeding spatial locations, crucial for capturing the
complex spatial correlations present in jet substructure.

3.2.3 Architecture Implementation

Our JetVision-Mamba architecture (Figure 3) consists of
five main components:

1. Input Processing: Multi-channel jet images of shape
(B, 33, 33, 15) where B is the batch size and 15 repre-
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sents the number of particle feature channels.

2. Initial Embedding: We use a 2D convolutional layer
with 3 × 3 kernels to project the 15 input channels to
128 feature dimensions, followed by LayerNorm and
GELU activation. This is meant to preserve spatial lo-
cality while increasing representational power.

3. 2D Mamba Block Stack: We employ 4-6 2D Mamba
blocks, each containing:

• LayerNorm for input stabilization

• 2D-to-1D reshape operation using raster scan-
ning

• Selective SSM with state dimension dstate = 16

• 1D-to-2D reshape to restore spatial structure

• Residual connection for gradient flow

4. Global Attention Pooling: A multi-head attention
mechanism with 4 heads aggregates spatial informa-
tion into a fixed-size jet representation of dimension
dmodel, using learned query vectors to focus on the most
discriminative spatial regions.

5. Classification Head: A two-layer MLP (dmodel →
dmodel → 10) with LayerNorm, GELU activation and
dropout (rate = 0.1) maps the jet embedding to class
probabilities via softmax.

Implementation Details: For the implementation of our
model we use the Weaver framework [22], which is a frame-
work for streamlined machine learning applications in HEP
based on pytorch [12]. On top of that, we wrote custom
GPU-optimized preprocessing functions for the jet image
creation. For the selective SSM implementations we used
the optimized CUDA kernels from [15, 29].

3.2.4 Training Objective

We optimize the model using cross-entropy loss over the 10
jet flavor classes:

L = − 1

N

N∑
i=1

10∑
j=1

y
(i)
j log p

(i)
j (3)

where N is the number of jets in a batch, y(i)j is the one-
hot encoded ground truth label for jet i and class j, and
p
(i)
j is the predicted probability. We use the Ranger opti-

mizer [28] with initial learning rate 5 × 10−4 and cosine
annealing schedule, training with mixed-precision (FP16).

4. Dataset and Features
We evaluate our JetVision-Mamba approach on the JET-

CLASS dataset [24], a large-scale benchmark specifically
designed for jet flavor classification tasks. This sec-
tion details the dataset characteristics, our preprocessing
pipeline, and the feature engineering approach used to con-
vert particle-level information into multi-channel jet im-
ages.

4.1. JetClass Dataset Overview

The JETCLASS dataset contains 125 million simulated
jets distributed across 10 physics classes representing dif-
ferent particle decay processes. The dataset is partitioned
into 100M training jets, 5M validation jets, and 20M test
jets, with equal representation across all classes to ensure
balanced learning.

The ten jet classes span the full spectrum of Standard
Model processes relevant to LHC physics:

• Higgs boson decays: H → bb̄ (Hbb), H → cc̄ (Hcc),
H → gg (Hgg), H → 4q (H4q), H → ℓνqq′ (Hqql)

• Electroweak boson decays: W → qq′ (Wqq), Z →
qq̄ (Zqq)

• Top quark decays: t → bqq′ (Tbqq), t → bℓν (Tbl)

• QCD background: Light quark and gluon jets (QCD)

This classification scheme captures the essential physics
signatures used in LHC analyses, where distinguishing sig-
nal processes (Higgs, W/Z, top) from QCD background
represents the primary experimental challenge.

4.2. Particle-Level Features

Each jet in the dataset contains up to 128 constituent par-
ticles, with zero-padding applied for jets with fewer con-
stituents. For each particle, JetClass provides 17 features
organized into three physics-motivated categories as shown
in Table 1. These features capture the complete kinematic,
identification, and tracking information necessary for com-
prehensive jet characterization.

The kinematic features encode the four-momentum in-
formation of each particle, including both absolute quanti-
ties (log pT , logE) and relative measures with respect to the
parent jet. The angular separation ∆R provides crucial in-
formation about the jet’s internal structure and collimation.

Particle identification features distinguish between dif-
ferent particle species through detector-based classification
algorithms. The charge measurement and particle type flags
(electron, muon, photon, charged/neutral hadrons) enable
the reconstruction of the underlying physics processes.

Trajectory displacement features capture the impact
parameters of charged particles, which are essential for
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Table 1: Particle input features used for jet tagging in the
JETCLASS dataset. Table adapted from [24].

Category Variable Definition

Kinematics

∆η Difference in pseudorapidity η between the particle and
the jet axis

∆ϕ Difference in azimuthal angle ϕ between the particle and
the jet axis

log pT Logarithm of the particle’s transverse momentum pT

logE Logarithm of the particle’s energy

log

(
pT

p
(jet)
T

)
Logarithm of the particle’s pT relative to the jet pT

log

(
E

E(jet)

)
Logarithm of the particle’s energy relative to the jet en-
ergy

∆R Angular separation to the jet axis
(√

(∆η)2 + (∆ϕ)2
)

Particle identification

charge Electric charge of the particle
Electron If particle is an electron
Muon If particle is a muon
Photon If particle is a photon
CH If particle is a charged hadron
NH If If particle is a neutral hadron

Trajectory displacement

tanh d0 Hyperbolic tangent of the transverse impact parameter
tanh dz Hyperbolic tangent of the longitudinal impact parameter
σd0

Uncertainty of the transverse impact parameter
σdz

Uncertainty of the longitudinal impact parameter

identifying jets originating from heavy quarks (b and c).
The hyperbolic tangent transformation applied to d0 and dz
provides numerical stability while preserving the discrimi-
native power of these variables.

4.3. Data Preprocessing and Jet Image Creation

Our preprocessing pipeline transforms the unordered
collection of jet constituents into structured multi-channel
2D images suitable for computer vision techniques. This
process involves several physics-motivated steps designed
to preserve spatial relationships while ensuring rotational
and translational invariance.

4.3.1 Jet Standardization

Following established practices in jet image analysis [18],
we apply a standardization procedure to each jet:

1. Centering: We translate each jet to place its pT -
weighted centroid at the origin in the η-ϕ plane, en-
suring translational invariance.

2. Rotation: We align the principal axis of the jet (deter-
mined by the moment of inertia tensor) with a canoni-
cal direction, providing rotational standardization.

3. Reflection: We apply a consistent reflection to ensure
uniform orientation across all jets.

This preprocessing ensures that the network focuses on
physically meaningful jet substructure rather than arbitrary
geometric orientations.

4.3.2 Multi-Channel Image Generation

We convert each standardized jet into a 33×33 pixel image
spanning ∆R = 0.8 in both η and ϕ directions, match-
ing the jet reconstruction cone size. The choice of 33 × 33
resolution provides sufficient granularity to capture jet sub-
structure while maintaining computational efficiency. Each
of the 15 particle features (excluding ∆η and ∆ϕ which be-
come spatial coordinates) forms a separate image channel
through 2D histogram binning.

4.3.3 Normalization and Standardization

The JETCLASS dataset provides particles features that are
already preprocessed for machine learning applications.
Continuous variables like log pT and logE are standard-
ized to zero mean and unit variance across the training set.
Impact parameters are transformed using tanh functions to
handle their naturally wide dynamic range. Our jet im-
age creation process preserves these preprocessing choices
while adding spatial binning and channel-wise normaliza-
tion within each image.

No data augmentation is applied, as the physics-
motivated standardization procedure already ensures that
the network learns translation and rotation invariant repre-
sentations. Additional augmentation could potentially in-
troduce non-physical correlations that would degrade per-
formance on real experimental data.

5. Results
Below is our evaluation of our JetVision-Mamba

approach on the JETCLASS dataset, comparing
against state-of-the-art baselines PARTICLENET and
PARTICLETRANSFORMER. This section details our ex-
perimental setup, evaluation metrics, and provides both
quantitative performance analysis and qualitative insights
into model behavior.

5.1. Experimental Setup

Training was performed on NVIDIA A100-SXM4-
40GB GPUs at the SLAC Shared Scientific Data Facility
(S3DF). We trained three JetVision-Mamba variants with
different model capacities, as shown in Table 3: JVM-Small
(dmodel = 64, nlayers = 6), JVM-Medium (dmodel = 128,
nlayers = 4), and JVM-Large (dmodel = 128, nlayers = 6), in
order to study the trade-offs between model size and perfor-
mance.

Hyperparameter Selection: We used the Ranger opti-
mizer with an initial learning rate of 5 × 10−4 and cosine
annealing schedule. Training employed mixed-precision
(FP16) with batch sizes ranging from 128-512 depending
on model size and GPU memory constraints. Given th large
dataset size and limited time, models were trained for 2
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Table 2: Jet tagging performance on the JETCLASS dataset for the three variants of our JetVision-Mamba (JVM) model, as
well as PARTICLENET and PARTICLETRANSFORMER.

All classes H → bb̄ H → cc̄ H → gg H → 4q H → ℓνqq′ t → bqq′ t → bℓν W → qq′ Z → qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

JVM-Small 0.783 0.9741 3356 585 85 466 291 2053 401 187 161
JVM-Medium 0.784 0.9744 3759 592 84 407 329 2160 478 193 165
JVM-Large 0.785 0.9746 3322 604 85 492 331 2079 434 193 169

ParticleNet 0.844 0.9849 7634 2475 104 953 3339 10526 11236 347 283
ParT 0.861 0.9877 10638 4149 123 1869 5435 32258 16129 542 402

Table 3: Model variants of JetVision-Mamba (JVM) and
their parameters.

d nlayers

JVM-Small 64 6
JVM-Medium 128 4
JVM-Large 128 6

epochs only and the epoch with lowest validation loss was
kept. For regularization, we used dropout rate set to 0.1.

Baseline Comparison: For PARTICLENET and
PARTICLETRANSFORMER, we used the official pre-trained
models from the official repository [24]. These models were
trained on the same JETCLASS dataset using optimized
hyperparameters reported in the original publication.

5.2. Evaluation Metrics

We evaluate model performance using standard metrics
for multi-class jet tagging:

Multi-class Metrics:

• Accuracy: Overall classification accuracy across all
10 jet classe.s

• Area Under Curve (AUC): Macro-averaged AUC
across all one-vs-rest binary classifications/4.

Signal vs. Background Rejection: For each signal
class S, we compute the background rejection at fixed sig-
nal efficiency:

RejX% ≡ 1

FPR
at TPR = X%

where TPR and FPR are the true positive and false positive
rates, respectively. The classification score for signal vs.
background discrimination is computed as:

scoreS vs B ≡ pS
pS + pQCD

This metric is particularly relevant for HEP applica-
tions where distinguishing rare signal processes from over-
whelming QCD background is the primary challenge.

4For that we used roc auc score from scikit-learn [21] with
options average == ’macro’ and multi class ==’ovo’.

5.3. Quantitative Results

Table 2 presents performance comparisons in terms of
AUC, accuracy and background rejection across all models
and jet classes. Our JetVision-Mamba models achieve com-
petitive performance while maintaining significantly lower
parameter counts than transformer-based approaches.

Overall Performance: JVM-Large achieves 78.5% ac-
curacy and 0.9746 AUC, representing satisfactory per-
formance on this challenging 10-class classification task.
While trailing the SOTA models PARTICLETRANSFORMER
(86.1% accuracy, 0.9877 AUC) and PARTICLENET (84.4%
accuracy, 0.9849 AUC), our approach demonstrates the vi-
ability of selective state space models for jet classification.
Indeed, Fig. 8 demonstrates the improvement in discrimi-
nating H → bb̄ from background processes using the JVM-
Large classifier.

Signal vs. Background Discrimination: For the impor-
tant H → bb̄ vs. QCD task, JVM-Large achieves a back-
ground rejection of 3,322 at 50% signal efficiency, com-
pared to 10,638 for PARTICLETRANSFORMER and 7,634
for PARTICLENET. While again lower than baselines, this
performance is sufficient for many physics applications and
could come with significant computational advantages.

Class-Specific Analysis: Performance varies signifi-
cantly across jet types, reflecting the inherent difficulty of
different classification tasks. Heavy flavor jets (H → bb̄,
H → cc̄) show reasonable discrimination, while more chal-
lenging classes like H → gg exhibit lower rejection rates
across all models, indicating fundamental physics limita-
tions rather than architecture-specific issues.

5.4. Computational Efficiency

Table 4 demonstrates the computational advan-
tages of our approach. JVM-Large achieves com-
parable inference throughput (1,120 samples/sec) to
PARTICLETRANSFORMER (1,290 samples/sec) while
using only 802k parameters compared to 2.14M for
ParticleTransformer. The linear scaling of Mamba blocks
enables efficient processing that becomes increasingly
advantageous for larger input sizes.

Parameter Efficiency: Our largest model uses 62%
fewer parameters than ParticleTransformer while achieving

7



Table 4: Number of trainable parameters, FLOPS and infer-
ence throughput, as measured in our training setup.

# params FLOPs Inference Throughput [samples/sec]

JVM-Small 227 k 185 M 1250
JVM-Medium 569 k 405 M 1230
JVM-Large 802 k 598 M 1120

ParticleNet 370 k 538 M 740
ParT 2.14 M 342 M 1290

91% of its accuracy, demonstrating favorable parameter ef-
ficiency. This reduction is particularly valuable for deploy-
ment in resource-constrained environments like real-time
trigger systems.

FLOP Analysis: JVM-Large requires 598M FLOPs
compared to 342M for PARTICLETRANSFORMER, reflect-
ing the overhead of 2D image processing and of the
SSM blocks. However, the linear scaling properties of
Mamba suggest that this gap might narrow for larger in-
put sizes where transformer quadratic complexity becomes
prohibitive.

5.5. Qualitative Analysis
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Figure 4: ROC curves for the Hbb vs QCD classification
task for the three variations of the JetVision-Mamba models
as well as PARTICLENET and PARTICLETRANSFORMER.

ROC Curves:
Figure 4 shows ROC curves for the critical H → bb̄ vs.

QCD classification task across all models. The curves show
that the different JetVision-Mamba variants considered have
overall inferior performance compared to PARTICLENET
and PARTICLETRANSFORMER, although overall all mod-
els are able to suppress QCD by more than three orders of
magnitude at a signal efficiency of 50%.

Confusion Matrix Analysis:
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Figure 5: 10-class confusion matrix for the JVM-Large
model

Figure 5 presents the 10-class confusion matrix for JVM-
Large. The model shows strong diagonal performance
with most confusion occurring between physically related
classes (specifically Higgs boson and W,Z boson decays).
Importantly, the QCD background is overall well-separated
from the signal classes, which is important for background
suppression.

Score Distributions:
Figure 6 illustrates the output score distributions for

JVM-Large. Panel (a) shows the 10-class softmax outputs
for true H → bb̄ jets, demonstrating clear peak structure
for the correct class. Panel (b) shows the binary classifica-
tion scores for H → bb̄ vs. QCD, revealing good separation
between signal and background distributions with limited
overlap.

Learned Representations:
Figure 7 presents t-SNE and UMAP visualizations of

the learned jet embeddings for JVM-Large, PARTICLENET,
and PARTICLETRANSFORMER. The dimensionality reduc-
tion reveals that JetVision-Mamba learns well-separated
cluster structures for different jet types, though somewhat
more ”blurry” and with different geometric arrangements
compared to the the other models. The preservation of class
structure in the embedding space is another indication that
the 2D Mamba architecture is successful at capturing dis-
criminative jet features.

5.6. Architecture Ablation Study

The three JetVision-Mamba variants provide insights
into architecture design choices:

Depth vs. Width Trade-offs: Comparing JVM-
Medium and JVM-Small with relatively similar parameter
counts (569k vs. 227k), we observe that increased model di-
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Figure 6: (a) Output softmax scores for the ten classes for
all true-Hbb jets and (b) binary classification score for Hbb
vs QCD for the JVM-Large model
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Figure 7: tSNE and UMAP plots for the JVM-
Large,PARTICLENET and PARTICLETRANSFORMER mod-
els.

mension provides better performance than increased depth
for this task. This seems to suggest that, for jet classifica-
tion tasks, richer feature representations are more valuable

than deeper hierarchical processing.
Scaling Behavior: JVM-Large shows modest improve-

ments over JVM-Medium despite increased depth, indicat-
ing diminishing returns from additional Mamba layers. This
plateau suggests that the jet classification task may not re-
quire extremely deep architectures, consistent with the rela-
tively local nature of jet substructure patterns. Alternatively,
it could indicate that the performance plateau in the JVM ar-
chitectures is not related to the depth/width of the models,
but to another limitation, namely the jet representation as an
image.

5.7. Generalization and Overfitting Analysis

We monitored training and validation performance
throughout training to assess generalization. The mod-
els show stable convergence without significant overfitting,
with validation metrics close to the training ones. An ex-
ample is given in Fig. 10. This indicates that the use of
dropout, LayerNorm, and early stopping appears sufficient
for regularization.

Cross-Physics Generalization: The consistent perfor-
mance across different Higgs decay modes suggests that
our approach learns generalizable jet substructure features
rather than process-specific artifacts. This is crucial for
deploying our model in actual experimental environments
where the jet compositions may differ from the training dis-
tributions. The performance of the model was also found to
be robust across different ranges of the jet transverse mo-
mentum pT , as is shown in Fig. 9.

5.8. Limitations

While JetVision-Mamba demonstrates competitive ef-
ficiency and reasonable performance, several limitations
merit discussion:

Performance Gap: The 7-8% accuracy gap compared
to SOTA methods represents a non-negligible performance
difference for physics applications. Future work should ex-
plore architectural improvements such as multi-scale pro-
cessing and enhanced attention mechanisms, as well as al-
ternative jet representations, for instance unordered sets in-
stead of images.

Image Resolution: Our current 33 × 33 image resolu-
tion may limit the capture of fine-grained jet substructure.
Higher resolutions could improve performance but require
careful optimization to maintain computational advantages.

Scanning Patterns: We primarily used raster scanning
for 2D-to-1D conversion. Exploring alternative scanning
patterns (spiral, zigzag) or multi-directional approaches
could better preserve spatial relationships in jet images, al-
though these might also come with an increased computa-
tional overhead.

Despite these limitations, JetVision-Mamba establishes
selective SSMs as a viable and efficient approach for jet
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classification, potentially opening new directions for re-
search in physics-informed deep learning architectures.

6. Conclusions & Future Work
This work presents the first application of selective

SSMs to jet flavor classification in HEP, introducing
JetVision-Mamba as a novel architecture that combines
physics-motivated image representations with efficient se-
quence modeling. Our approach demonstrates that 2D
Mamba models can achieve competitive computational ef-
ficiency while maintaining reasonable classification perfor-
mance.

6.1. Key Contributions and Findings

Our primary contribution lies in unifying between mod-
ern sequence modeling techniques and HEP applications
by converting unordered jet constituents into structured
multi-channel images which are used as inputs for 2D
SSM layers. The JetVision-Mamba architecture achieves
78.5% accuracy and 0.9746 AUC on the 10-class JET-
CLASS dataset while using 62% fewer parameters than
PARTICLETRANSFORMER. Most significantly, our ap-
proach exhibits linear computational complexity compared
to the quadratic scaling of transformer-based methods, rep-
resenting a fundamental advantage for scaling to higher-
sequence-length jet representations.

Our results for interpreting the nature of jet classifica-
tion tasks. The fact that JetVision-Mamba is inferior to
PARTICLENET and PARTICLETRANSFORMER could indi-
cate that explicit modeling of particle-to-particle interac-
tions provides superior discriminative power compared to
our spatial convolution approach. This indicates that jet
substructure is to some extent non-local in nature, mean-
ing that distant particles can have strong physical correla-
tions, benefitting more from flexible interaction modeling
than from structured spatial processing.

6.2. Future Research Directions

We can think of several promising routes to address the
current limitations of our model. Architectural enhance-
ments represent the most immediate opportunity, where we
could think of hybrid approaches that combine Mamba ef-
ficiency with explicit particle interaction modeling. Most
importantly, it would be worth evaluating the same archi-
tectural backbone against a jet representation different than
jet images, such as point cloud or particle graph, in order to
ascertain the fundamental strengths of the Mamba architec-
ture for jet classification tasks.

Overall, the broader significance of this work lies in
demonstrating that modern sequence modeling techniques
can be successfully adapted to HEP after considering the
domain-specific requirements and constraints. As datasets
and computing requirements continue to grow, approaches

like JetVision-Mamba that pay closer attention to computa-
tional efficiency might become increasingly valuable for en-
abling offline or even real-time analysis of the vast datasets
produced by future particle physics experiments.
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Appendix

A. Additional plots
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Figure 9: ROC curves for the Hbb vs QCD classification
task for the JVM-Large models in bins of the jet transverse
momentum pT .
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Figure 10: Training loss and training and validation accu-
racy for the JVM-Large model. For this training one run,
one epoch was defined to contain 1.024M samples, such
that 98 epochs correspond to one pass over the entire JET-
CLASS training set.
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Figure 8: Distribution of the jet mass before (left) and after (right) applying a cut on the JVM-Large Hbb vs QCD binary
classification score. For these distributions, all jets from the JETCLASS training set were used, with their yields normalized
to the expected number of events expected to be produced after combining the Run 2 (2015-2018) and Run 3 (2022-2025)
runs of the LHC.
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